
Labster: A Web-Based Tool for Interactive Program Visualization in EECS 280
James Juett (jjuett@umich.edu) and Georg Essl (gessl@umich.edu)

What are Students Saying about Labster?
“Labster is great. Truly the best tool we have at our disposal for learning topics

such as what has been taught so far in EECS 280. This would have been a nice tool

to have in EECS183.”

“...I’m a visual learner, so the representations of memory are very very helpful!”

“...I wish I was shown this thing when I started coding...”

“It was incredibly helpful for the Labster software to tell us when a function was

tail-recursive or not and give explanations as to why it was tail-recursive or not—

this helped elucidate the difference between recursion and tail-recursion.”

“...Going in I was a bit unsure of how to write the code, but the visual process go-

ing through the code step by step and seeing what was returning and where it

was going helped exponentially. Great Tool!”

“Never has a discussion sections [sic] played such a huge role in helping me mas-

ter the material learned in lecture.”

“...I honestly didn’t understand recursion until I ran through the programs on Lab-

ster.”

“...we should use it all the time for everything and I don’t understand why we

don’t.”

Background and Motivation
An alarming number of students are not compe-

tent programmers after completing initial pro-

gramming courses [1]. Being able to think

through basic programming activities is a prereq-

uisite for high-level program composition and

problem solving, but students perform poorly on

tasks that require them to mentally trace pro-

gram execution [2]. One leading explanation for

this is that students may not have a viable mental

model of the notional machine that bridges the

gap between written source code and the way a

program actually runs [3]. Labster addresses this

problem directly by illuminating the notional ma-

chine and allowing students to look inside the

“black box” that runs their programs.

Methods and Experiment
We conducted a between-subjects experiment to evaluate the impact Labster has

on students’ learning. As part of the regular curriculum for the EECS 280 course at

the University of Michigan, students work through interactive “lab-style” exercis-

es during discussion sections. The “Arrays and Pointers” lab requires students to

write short functions to traverse and manipulate arrays using pointers. Students

in the Fall 2014 and Winter 2015 terms completed the same exercises, but the

latter group used Labster to write and run their code. We compared student per-

formance on conceptual questions and responses to survey questions both be-

fore and after the lab in each term.

Evaluation of students’ code-tracing skills before and after the “Arrays and Pointers” lab in EECS 280.

Students tested after using Labster had significantly improved scores over those tested before the lab

(U=6957, z=4.161, p<0.0005) and those tested after completing the same lab without Labster (U=2271,

z=2.696, p<0.007). Students tested before/after the lab without Labster did not receive significantly

different scores (U=1674, z=-1.123, p<0.262).

Students who used Labster agreed more strongly. (U=89203, z=5.004, p<0.0005).

Students who used Labster agreed more strongly. (U=90674, z=5.526, p<0.0005).

What is Labster?
Labster is a web-based, interactive program visu-

alization system designed for use in introductory

programming courses. Students write their own

code and Labster provides an interactive visuali-

zation that illustrates how the program would ex-

ecute on a computer. Both the flow of code and

the contents of memory are visualized in a natu-

ral way, and each individual step in the evaluation

of expressions is cleanly animated. Students have

several options for navigating through their pro-

gram’s execution, moving both forward and back-

ward in time. Labster also offers educational

feedback based specifically on the code each stu-

dent writes and the behavior of that code at

runtime.

References
[1] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial,

D. Hagan, Y. B.-D. Kolikant, C. Laxer, L. Thomas, I.

Utting, and T. Wilusz, “A multi-national, multi-

institutional study of assessment of programming

skills of first-year cs students,” ACM SIGCSE Bulle-

tin, vol. 33, no. 4, pp. 125–180, 2001.

[2] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J.

Hamer, M. Lindholm, R. McCartney, J. E. Moström,

K. Sanders, O. Seppälä et al., “A multi-national

study of reading and tracing skills in novice pro-

grammers,” ACM SIGCSE Bulletin, vol. 36, no. 4, pp.

119–150, 2004.

[3] J. Sorva, “Notional machines and introductory

programming education,” ACM Transactions on

Computing Education (TOCE), vol. 13, no. 2, p. 8,

2013.

[4]C. D. Hundhausen, S. A. Douglas, and J. T. Stasko,

“A meta-study of algorithm visualization effective-

ness,” Journal of Visual Languages & Computing,

vol. 13, no. 3, pp. 259–290, 2002.

Labster’s simulation interface. The student’s program erroneously tries to dereference an out-of-bounds pointer, and Labster explains the prob-

lem. When run in a regular setting, the student’s program would either crash or behave incorrectly, but with no clear indication why.

Why Does it Work?
Labster does away with the “black-box”.

Students can see how their program works and

exactly what each piece of code actually does.

Labster actively engages students.

Running a program is no longer a passive process.

Engagement is key to effective learning. [4]

Labster is easy to use.

Using Labster is as simple as visiting a web page

and there are no barriers for students.

Labster is designed for education.

Unlike regular compilers, Labster’s foremost de-

sign principle is helping students learn.

eecs280labster.eecs.umich.edu

