More than Just Playing with Numbers

The power of middle school students using math to think about how robots work

Eli M. Silk esilk@me.com

Christian D. Schunn schunn@pitt.edu

Background

Research Question
When students use math to guide basic robot movements, what is the effect of framing the task in terms of mechanistic thinking versus calculational thinking?

Frame - "set of expectations an individual has about the situation in which she finds herself that affect what she notices and how she thinks to act" (Hammer et al., 2005)

Activity Context

Robot Synchronized Dancing

A Model Eliciting Activity (design task with series of express-test-revise cycles) in which student teams invent strategies for synchronizing different-size robots (same underlying proportional relationships, but different constants)

Experimental Manipulation

- Two groups ($5^{\text {th }}-7^{\text {th }}$ grade) each in 1 -week instructional activity
- Students worked in teams (dyads/triads), 4 teams per group
- Contrasting framings support different student approaches
位ems to matter. For example, robots with higer wheels need less motor rotations to go a a iven
distance. Create a method that uses whel size to determine how a many motoor rotations neeeded to go
given
\qquad

Focused on Connecting Quantities an Instructor: "What does this value/operation correspond to
on the robot?"

Advantages of Mechanistic Teams

Manipulation Check: Do Groups Think about Task Differently? Yes - Mechanistic teams..

- Used (mental) images/animations
- not just numbers/operations
- Based solutions on physical features

But mechanistic thinking is not easy

- Not ALL Mechanistic teams adopted it
- However, NO Calculational teams did

\#Posters sith hhe feature (out of 15)	Calc	Mech
Situation Pictures	1	7
\rightarrow Physical Features	0	6
Label Interm. Values	8	12
Explanation	4	8

Mechanistic Teams Invent More Sophisticated Solutions
No differences in some ways

- Both invent working strategies (valid)
- Both articulate them well (clear steps)

And important differences in other ways

- Less reliance on adjusting/guessing
- More generalizing beyond given context

\#Posters with he feature (out of 15)	Calc	Mech
Valid	13	13
Clear Steps	15	15
\longrightarrow	Fully Specified	6
Generalized	8	15

Mechanistic Teams Improve use of Mathematics

10-item individual pre-post assessment

robot move forward 24 centimeters. How many motor rotations
does she need to enter in her program to do her move correctly?
Repeated Measures ANOVA with follow-up tests suggest that only the Mechanistic Group reliably improves Pre-Post
Mechanistic Group: Gain $=.23,95 \% \mathrm{Cl}[.09, .37]$
Calculational Group

Mechanistic Teams Transfer their Solutions

Mechanistic teams more likely to use robot dancing solutions in a later competition task - recognizing similar underlying structure

1 out of 4 Calculational Teams vs. $\underline{4}$ out of 4 Mechanistic Teams Calculational Team
S: Not really. No. Cause there isn't any, Iike, it isn't ike we are comparing two different robotst to do the same thing. All
robots are the same in this. We're not using two dififerent robotst to do the same thing. So there really is on noed for for any strategies like that.
Mechanistic Team
S1: We used the, the strategies that we learned all throughout
We used Ume, , ine strategies that we learned all throughout
wircu the striaghts, we, un, used the
circumerence of the wheel as the rotations and measured circumference of the
measured the area.
1: Whatasured youe area. by measured the area?
S2: Like how far it was from here to here
S2: Like how far it was from here to here. And then we like said
lthink the wheel was 26 cm , so we said one rotation watid

