What is a Systematic Literature Review?

- Procedure for interpreting a large amount of information "designed to identify existing gaps in a field of research and to make recommendations for closing these gaps" [5]
- Involves 4 main steps:
 - 1. Define research questions and keywords for searching
- 2. Find relevant research that meets inclusion criteria
- 3. Systematically review each source
- 4. Synthesize results

(1) Define research questions and keywords for searching (2) Find relevant research that meets inclusion criteria

Research questions

- What student affective responses are used to evaluate the effectiveness of active learning?
- What evidence is used to measure these student affective responses to active learning?
- What are the relative strengths and weaknesses of each type of evidence?
- How are contextual features of a course connected with positive or negative student affective responses?

Keywords and inclusion criteria				
Category	Inclusion criteria	Example search terms		
Active learning	Describes an active learning intervention during lecture class time.	Active learning, project based learning, peer instruction.		
In-class	Must be in an undergraduate STEM course. The study must include course-level data.	Engineering education or mechanical engineering. AND Undergraduate or higher education. NOT K-12 or high school.		
Affective response	Includes empirical evidence of student affective response to that active learning intervention.	Course evaluation, student responses, student perceptions, or affective response, affective outcome.		

A Systematic Literature Review: How do students respond to active learning?

Caroline Crockett, Cynthia Finelli

Google Forms is a trademark of Google LLC

Partner screening of full texts in RefWorks and Google Forms

> 410 full texts meet criteria

*Many studies use more than one type of active learning

Full text coding guide

Coding Question		ng Question	Example responses	
Course info	Discipline	Biology, Math, Civil Engineering,		
	Year	First year, second year, third year, fourth		
	Characteristics	Required, elective, for majors, for STEM		
Study methodology	Sample size	Sample size, class size, and percentage re-		
	Evidence or data	Validated instruments, Instructor-generat		
	sources	interviews, observations		
		Quantitative, qualitative, pre-post, comp		
	Design	lists questions, reports statistical signific		
Affective response	Activities	Summary of in-class activities		
	Type of active	Individual, groups, problem solving, pro		
	learning	learning/experiment, quick questions, de		
	Affective	Satisfaction, enjoyment, self-reports of h		
	responses	learning, confidence, engagement/partici		
	Conclusion	Positive, mixed/neutral, negative, inconc		
Misc.		Instructor strategies for active learning		
		Study design on cognition and conclusion		
		Additional comments		

Why look at active learning?

- Active learning positively influences a wide range of educational outcomes such as increased student learning and higher retention in STEM programs [1]
- STEM instructors are still reluctant to adopt active learning practices, partly due to perceived student resistance [2]-[4]
- Affective reactions refer to the range of possible positive and negative student reactions to active learning

	Negative, 8
Qualitative, 59	Mixed, 56
xed Methods, 111	Mostly Positive, 174
uantitative, 236	Positive, 172
Methodology	Conclusion

year

students eporting ted survey,

arison group, ance

ject, inquiry mos nelpful to pation clusive

Acknowledgements

The authors thank our collaborators: Maura Borrego, Matt DeMonbrun, Kevin Nguyen,, Prateek Shekhar, Sneha Tharayil, Robyn Rosenberg, and Cynthia Waters. We would also like to gratefully acknowledge the NSF for their financial support through the #1744407 grant funding. Any opinions, findings, and conclusions or recommendations expressed in this Report are those of the authors and do not necessarily reflect the views of the National Science Foundation; NSF has not approved or endorsed its content.

Works Cited

[1] Freeman, S., et al., Active learning increases student performance in science, engineering, and mathematics. PNAS, Proceedings of the National Academy of Sciences of the United States of America, 2014. [2] Dancy, M. H., & Henderson, C. (2012). *Experiences of new* faculty implementing research-based instructional strategies. Paper presented at the AAPT 2011 Physics Education Research Conference, Melville, NY.

[3] Finelli, C. J., Daly, S. R., & Richardon, K. M. (April 2014). Bridging the research-to-practice gap: Designing an institutional change plan using local evidence. Journal of Engineering Education, 103(2), 331-361.

[4] Shadle, S. E., Marker, A., & Earl, B. (2017). Faculty drivers and barriers: laying the groundwork for undergraduate STEM education reform in academic departments. International Journal of STEM Education, 4(8), 1-13.

[5] Thorpe, R., & Holt, R. (Eds.). (2008) The SAGE dictionary of qualitative management research. London: Sage Publications Ltd. [6] Borrego, M., M.J. Foster, and J.E. Froyd, *Systematic literature* reviews in engineering education and other developing interdisciplinary fields. Journal of Engineering Education, 2014. **103**(1): p. 45–76.

[7] Shekhar, P., DeMonbrun, M., Borrego, M., Finelli, C., Prince, M., Henderson, C., & Waters, C. (2015). Development of an observation protocol to study undergraduate engineering student resistance to active learning. International Journal of Engineering Education, 31(2), 597–609.

http://homepages.wmich.edu/!chenders/Publications/2015ShekharIJE E.pdf

[8] DeMonbrun, M., Finelli, C. J., Borrego, M., Shekhar, P., Prince, M., Hendersen, C. & Waters, C. (2017). Creating an Instrument to Measure Student Response to Instructional Practices. Journal of Engineering Education, 106(2).