Term-Based Team Projects
in Undergraduate Engineering Mechanics
Greg Hulbert
hulbert@umich.edu

Presented at the Third Annual Research and Scholarship in Engineering Education Poster Session. 10/14/08.

Abstract
◆ UM Mechanical Engineering Program Educational Objective:
 Upon graduation, our students are prepared for successful careers
 because of their integrated introduction to teamwork,
 communications, and problem-solving
◆ Student teams used effectively in laboratory and design courses
◆ Engineering mechanics courses taught using traditional format
 of lecture, textbook problems, and examinations
◆ Can student teams assist learning in engineering dynamics?
◆ How can student teams be constructed for effective learning?
◆ Pilot study conducted at the UM-SJTU Joint Institute in Spring
 2008 with a mix of UM and JI students

Research Questions
◆ How does the inclusion of a team-based term project affect
 student understanding of undergraduate engineering dynamics?
◆ How do students learn to apply their engineering dynamics
 knowledge to a term project?
◆ How do teams impact student learning of engineering
 dynamics?

Methodology
◆ Students grouped randomly into 5-6 person teams
◆ Teams divided into two equal groups
 ■ Term design project
 ■ No term design project
◆ All teams given bi-weekly team-based homework problem
◆ All students given introduction to teamwork
◆ Assessment
 ■ Dynamics Concept Inventory (DCI) Test (Gray et al. 2005)
 ● Administered first and last days of class
 ● Tests identified by team number
 ■ Exit interviews
 ● Questions on effectiveness of student teams, term
 project and multicultural teaming
 ● Administered by UM students (not class students)

Results
◆ Class size: 94 students
◆ Number of student groups: 16
 ■ 8 Teams assigned design project
 - Including 3 multicultural UM-JI teams
 ■ 8 Teams with no design project
◆ Term design project: Design an automatic door opening for
 handicapped assist
 ■ Smallest possible motor
 ■ Door opening and closing timing requirements
◆ Oral presentation and written report of team designs on
 last day of class

Discussion
◆ Data analysis of DCI test results in progress
◆ Student exit interview responses
 ■ Mixed views on bi-weekly team-based HW problems
 ■ Design project helpful, but
 ■ More time/grading weight desired for design project
 ■ Multicultural experience both desired and challenging
◆ Continuing study in Fall 2008
 ■ One section of ME 240
 ■ Continuing use of DCI Test
 ■ Student team design project (optional)

Acknowledgments
This research is supported by an Investigating Student Learning grant
from CRLT. The help of the exit interviewers is acknowledged:
Jeremy Brown, Lara Hulbert, Justin Romeo, Cassandra Ruch,
Patricia Schuster, and Justin Romeo. Appreciation extended to the
UM-SJTU Joint Institute for its interest and support of this
initiative.