Who Majors in STEM: Psychological Measures that Predict Major Choice
Heather Eardley, Joanna Frye & Angela Vidal-Rodriguez
UM School of Education
jrfrye@umich.edu
Presented at the Fifth Annual Research and Scholarship in Engineering Education Poster Session. 02/08/11.

BACKGROUND
- Women and girls continue to be underrepresented in fields such as physics, engineering and technology (Brotman & Moore, 2007)
- Previous studies indicate that precollege math and science achievement is an influential factor in later persistence in the pipeline through college.
 - Thus, precollege years are a critical period for encouraging women to enter STEM fields at the post-secondary level.
- The majority of research in math and science has focused on cognitive factors such as ability and intelligence-qualities that are considered innate and stable across an individual’s lifetime (Chang, Singh & Mo, 2007)
 - A recent body of research on pre-college achievement focuses on the importance of self-efficacy, self-concept, locus of control

THEORETICAL FRAMEWORK
- Efficacy Expectations: The belief about a person’s ability to perform a particular action.
- Relationship between efficacy expectations (self-efficacy) and outcome expectations: An individual who has high self-efficacy tends to have more positive outcome expectations.
- Example: Heidi believes that she is capable of doing well in her pre-calculus class. Heidi believes that receiving high grades in math will increase the likelihood that she will declare an engineering major.

CONCEPTUAL MODEL

<table>
<thead>
<tr>
<th>Predicted Probabilities of choosing a STEM major</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Female</td>
</tr>
</tbody>
</table>

SAMPLE & DATASET
- Dataset: NELS:88 and Follow-up 1 and 2
 - The first wave of NELS:88 data was collected in the spring of 1988
 - NELS is a nationally representative sample of nearly 25,000 eighth grade students at 1,052 high schools
 - Follow-up 1 and 2: Students in 10th and 12th grade

 - The dataset includes information collected from students, parents, school administrators, and teachers
 - Our study used variables from the student questionnaire in the base year, follow up 1 and follow up 2.

 - Sample size:
 - Total Sample: 14,893 cases (10,858 missing cases and one outlier were removed)
 - Final Sample: 4,035

STATISTICAL METHOD
- A logistic regression model technique was used because of the dichotomous dependent variable
 - \[
 \log \left(\frac{p}{1-p} \right) = \alpha + \beta X_i + \gamma Y_i + \epsilon_i
 \]

VARIABLES
- Outcome Variable: Intended field of study
 - STEM major vs. Non STEM (Binary: 1=STEM 0=Non-STEM)
- Independent Variables:
 - Model 1- Block of Demographic Variables (female, dummies of race/ethnicity, standardized SES)
 - Model 2- Model 1 + Block of Academic Ability (Amount of coursework in calculus, pre-calculus, trigonometry, biology, physics, chemistry and standardized science and math test scores)
 - Model 3- Model 2 + Block of Psychological Variables (Standardized locus of control, Standardized self-concept, Math self-efficacy)
 - Proxy for math self-efficacy: fs163d- Math is one of R’s best subjects

RESULTS
- Our study confirms that increases in math and science test scores is associated with increases in the probability of majoring in STEM.
- Despite the higher odds ratios of African American men and women, these students are still underrepresented in STEM fields.
- Low SES students have also greater probability of selecting a STEM major, perhaps due to perceived economic returns in STEM fields.
- Our proxy for math self-efficacy was significant.
 - Educational initiatives should include self-efficacy concepts in the design of programs that encourage students to study mathematics and science.
- Our variables for locus of control and self-concept were insignificant.
 - This was inconsistent with the literature and our hypothesis.
 - Perhaps these constructs are less important after controlling for ability, self-efficacy and demographics

DISCUSSION
- Our study confirms that increases in math and science test scores is associated with increases in the probability of majoring in STEM.
- Despite the higher odds ratios of African American men and women, these students are still underrepresented in STEM fields.
- Low SES students have also greater probability of selecting a STEM major, perhaps due to perceived economic returns in STEM fields.
- Our proxy for math self-efficacy was significant.
 - Educational initiatives should include self-efficacy concepts in the design of programs that encourage students to study mathematics and science.
- Our variables for locus of control and self-concept were insignificant.
 - This was inconsistent with the literature and our hypothesis.
 - Perhaps these constructs are less important after controlling for ability, self-efficacy and demographics