Prototype to Production (P2P): Conditions and Processes for Educating the Engineer of 2020
NSF DUE-0618712
Website: http://www.ed.psu.edu/educ/e2020/p2p

Study Origins: NAE’s Engineer of E2020
A vision of the contexts for engineering in 2020:
• Dynamic technological environment
• Complex societal, global, and professional contexts

Attributes of the Engineer of 2020
• Strong analytical skills
• Practical ingenuity
• Creativity
• Communication competencies
• Business, management, and leadership skills
• High ethical standards and professionalism
• Agility, resilience, flexibility

Expected Outcomes of the P2P Study
Goals
• Provide baseline portrait of engineering education and its readiness to produce the engineers of 2020
• Identify educational practices and conditions in 2–4-year institutions that promote learning
• Identify learning–related differences in the experiences of women and underrepresented students
• Develop a comprehensive map of in- and out-of-class experiences influencing student learning
• Validate a conceptual model for future engineering and education studies

Use Prototype-to-Production Study (P2P) to:
• Provide a quantitative, nationally representative comparison for six detailed, qualitative case studies
• Triangulate findings of case studies
• Validate hypotheses regarding effective practices identified in case studies

Conceptual Framework

Survey Development

Methods
Four-Year Institutions
• Population
 • All schools with at least two ABET-accredited undergraduate programs in:
 • Biomedical or bioengineering
 • Electrical engineering
 • Chemical engineering
 • Civil engineering
 • Mechanical engineering
 • Sampling Design
 • 6 X 3 X 2 disproportional stratified random sample
 • 6 disciplines
 • 3 levels of highest degree offered (bachelor’s, master’s, or doctorate)
 • 2 levels of control (public or private)
 • 9 pre-selected institutions to ensure inclusion of:
 • 6 case study sites from companion study
 • 3 institutions with general engineering programs

Community Colleges
• Sampling Design
 • Purposeful selection of 15 community colleges with the largest numbers of students transferring to a four-year engineering program

Sample and Response Rates

Sample Findings: Interdisciplinary Skills
This Analysis and Interpretations
• Aspects of the curriculum and co-curriculum contribute to interdisciplinary skills
• A greater emphasis in P&T on education research and related activities may reduce faculty time to incorporate other disciplinary perspectives in their courses
• Active learning pedagogies promote the sharing of multiple perspectives through small group activities
• Faculty attitudes toward curricular breadth affect course content and may prompt faculty to urge certain kinds of co-curricular involvement
• Significant relationships differed by engineering sub-discipline (not shown)

Research Team
Lisa R. Lattuca, Professor of Education, University of Michigan
Patrick T. Terenzini, Distinguished Professor of Education and Senior Scientist Emeritus, Pennsylvania State University
Thomas M. Litzinger, Prof., Mechanical Engineering Director, Leonhard Center
Gail E. Krum, Associate Professor, Engineering Design, Industrial Engineering
Betty J. Harper, Associate Director, Leonhard Center
Thomas A. Litzinger, Prof., Mechanical Engineering
Latif M. Jiji, Associate Professor, Pharmaceutical Science
Ardie D. Walser, Dean of Undergrad. Studies & Professor of Electrical Engineering
Anita D. Wager, Dean of Undergrad. Studies & Professor of Electrical Engineering

Sample Analysis: Interdisciplinary Skills
Variables
• Interdisciplinary Skills: how well students apply perspectives from multiple fields
• Student–reported experiences: curriculum, co-curriculum, pedagogies, climate
• Faculty–reported institutional practices: promotion/tenure, grading practices, instructional methods, attitudes toward ugrad engineering, curriculum planning

Analysis
• Multiple linear regression
 1. Relate student experiences to interdisciplinary skills (MI in this example)
 2. Relate institutional practices to significant student experiences

Sample Participating Four-Year Institutions (n=32)

Survey Participating Two-Year Institutions (n=5)

Research Team
Lisa R. Lattuca, Professor of Education, University of Michigan
Patrick T. Terenzini, Distinguished Professor of Education and Senior Scientist Emeritus, Pennsylvania State University
Thomas M. Litzinger, Prof., Mechanical Engineering Director, Leonhard Center
Gail E. Krum, Associate Professor, Engineering Design, Industrial Engineering
Betty J. Harper, Associate Director, Leonhard Center
Alexander C. Phu, Senior Project Associate
Kevin Barron, Sajee Gupta, Huy Ly, David Knight, Dan Merson, David Perez, and Travis York, Graduate Research Assistants
Andra D. Wager, Dean of Undergrad. Studies & Professor of Electrical Engineering
Laif M. Jiji, Herbert G. Kaye, Professor of Mechanical Engineering